
TRACE 32

In-Circuit Debugger

Quick Installation
and

Tutorial

TRACE32: In-Circuit Debugger (ICD)
August 1998

Copyright (C) 1989-1998 Lauterbach Datentechnik GmbH

All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system or translated into any language in any form by any means without the written permission of
Lauterbach Datentechnik GmbH.

TRACE32 is a registered trademark of Lauterbach Datentechnik GmbH.

Lauterbach Datentechnik GmbH
Fichtenstrasse 27
D-85649 Hofolding
Germany

telephone: ++49 8104/8943-50
facsimile: ++49 8104/8943-49
e-mail: support@lauterbach.com

Table of Contents

TRACE32-ICD Preface ________________________ Page PRE-1

What is an In-Circuit Debugger? PRE-1

About this Guide PRE-2

Where to Look for More Information PRE-4

Quick Installation for TRACE32-ICD _____________ Page INST-1

About the Installation Guide INST-1

Product Overview INST-2

System Concepts INST-4

Host Interfaces INST-4

The Debug Module INST-11

Hardware Installation INST-12

Installation with ISA Interface Card (PODPC) INST-12

Installation with Parallel Interface Card (PODPAR) INST-15

Installation with Ethernet Interface (PODETH) INST-18

Software Installation INST-20

PODPC or PODPAR on MS-WINDOWS (PC) INST-21

 PODETH on MS-WINDOWS (PC) INST-26

PODETH on SunOS, Solaris (SUN) INST-29

PODETH on HP-UX 10.X (HP-9000) INST-31

Troubleshooting INST-33
In-Circuit Debugger iii Table of Contents

Tutorial for TRACE32-ICD _____________________ Page TUT-1

About the Tutorial TUT-1

Start TRACE32-ICD TUT-2

Setup the Application Properties TUT-3

The Online Help TUT-4

Setup the Debug Environment TUT-7

Batch Jobs TUT-11

The User Interface TUT-13

How to Debug the Program TUT-15

How to Display and Modify CPU Registers TUT-25

How to Display and Modify the Special Function Registers TUT-27

How to Display and Modify Memory TUT-29

How to Set Breakpoints TUT-31

Software Breakpoints TUT-31

Breakpoints in ROM, Flash, EEPROM TUT-35

Breakpoints on Data Accesses TUT-36

Onchip Breakpoints (Overview) TUT-38

Display and Modify HLL Variables TUT-39

Format HLL-Variables TUT-42

Exit TRACE32 TUT-44
Table of Contents iv In-Circuit Debugger

TRACE32-ICD Preface

What is an In-Circuit Debugger?

Most CPUs provide an onchip debug system implemented in the CPU. Typical examples
are the BDM interface from Motorola, the JTAG interface for the ARM7 or the JTAG
interface for the PowerPC family. The debug interface usually requires a few CPU pins that
are used for the communication between the onchip debug system and a third party
development tool. The onchip debug system provides the following basic features:

• Read/write memory

• Read/write CPU register

• Single step and real time execution

• Hardware breakpoints and trigger features (not supported by all CPUs)

The In-Circuit Debugger TRACE32-ICD uses these basic features of the onchip debug
system to provide a powerful debug tool that offers:

• Easy high-level and assembler debugging

• Display of internal and external peripherals on a logical level

• Onchip break and trigger support

• RTOS awareness

• Flash programming

• Powerful script language

• Multiprocessor debugging
1 TRACE32-ICD Preface

TRACE32-ICD is part of the TRACE32 microprocessor development tool product line.
This product line also includes a trace extension for some ICD-Debuggers and the full
featured In-Circuit Emulators TRACE32-ICE for all CISCs and TRACE32-FIRE for the fast
RISC processors.

All TRACE32 development tools use a common user interface. So the look and feel stays
the same no matter what system you are using.

About this Guide

The purpose of this guide is:

• To get your In-Circuit Debugger installed.
(See Quick Installation for TRACE32-ICD).

• To help you to write the proper start up sequence.
(See Tutorial for TRACE32-ICD).

• To make you familiar with the basic functions of TRACE32-ICD.
(See Tutorial for TRACE32-ICD).

In-Circuit Debugger
TRACE32-ICD

In-Circuit Emulator
TRACE32-ICE/FIRE
TRACE32-ICD Preface 2

Since an In-Circuit Debugger always needs a working target system, we also offer
Simulators for some major CPU families, that allow you to get familiar with our debugging
tools even before your target hardware is available.

Simulator:

A simulator can run without a target processor. The work of the CPU is simulated by
software. So real time debugging is not possible.

You can download our simulators from our web page http://www.lauterbach.com
or from our CD TRACE32 Product Information by using the link Download Demo
Software in the main menu.
3 TRACE32-ICD Preface

Where to Look for More Information

The common TRACE32 user interface contains a detailed Online-Help, that offers the
most current description of all debug features.

If you have installed the TRACE32 software The Online Help on how to start the Online
Help.

The Online Help can also be called without installing the TRACE32 software:

• On WINDOWS systems simply call the help file \DOS\MAN.HLP on the CD.

• Or use the PDF file TRACE32-MANUAL.PDF in the PDF directory of the CD to open
the Online help in PDF format.

The following books contain the most relevant information for the use of TRACE32-ICD:

ICD Targets

Since the Quick Installation for TRACE32-ICD and the Tutorial for TRACE32-ICD are
generic for all supported CPUs, we strongly recommand to read the ICD Target Guide for
your CPU. This guide describes all CPU specific settings and features.

ICD Debugger User´s Guide

This book provides information about the basic concepts for the In-Circuit Debuggers and the
other PODBUS devices (e.g. ICD Trace, ICD Risc Trace, EPROM Simulator).
TRACE32-ICD Preface 4

Reference

In the Reference book you can find an alphabetical list of all debug commands for the
TRACE32 development tools and a detailed description of their syntax and function. All
commands not available for TRACE32-ICD are marked with (E − TRACE32-ICE only) or
(F − TRACE32-FIRE only).

The following books contain information for advanced users.

Installation Guide General Installation Guide for all TRACE32
development tools.

Operation System User´s Guide Gives an overview of the features for the
TRACE32 Operating System e.g. windows
management, file management, printer etc.

Operation System Reference Provides a detailed description of the
TRACE32 Operating System e.g. windows
management, file management, printer etc.

Practice User´s Guide Introduction into the batch language
PRACTICE.

Practice Reference Alphabetical list of all PRACTICE com-
mands.
5 TRACE32-ICD Preface

Quick Installation for TRACE32-ICD

About the Installation Guide

This Installation Guide describes the basic installation and configuration for all
TRACE32-ICD In-Circuit Debuggers that are implemented using their onchip debug
interface. Typical examples for onchip debug interfaces are BDM, JTAG, ONCE …

For the installation and configuration of the ROM monitors or for special system
configurations (e.g. additional devices, multiprocessor debugging etc.) refer to the
Installation Guide .
1 Quick Installation for TRACE32-ICD

Product Overview

A complete TRACE32-ICD configuration consists of:

• A PODBUS interface to the host (PODPC, PODPAR or PODETH)

• A Debug Module

Lauterbach offers two different debug modules: the Standard Debug Module and the
Power Debug Module. Both modules can be used all CPUs that are supported by
TRACE32-ICD.

Some CPUs like the PPC603 or the MPC740/750 need the Power Debug Module,
since their complex debug interface requires the transfer of huge amounts of data. To
guarantee a fast data transfer rate the Power Debug Module has its own RISC
controller.

• A Debug Cable

The Debug Cable connects the Debug Module to the debug interface on your target.
For the connector pinout of your debug interface refer to the ICD Target Guide for your
CPU.
Quick Installation for TRACE32-ICD 2

• A Clock Cable

By default TRACE32-ICD uses a fixed clock to run the debug interface. A clock range
from 100KHz up to 5 MHz can be used.

We also provide a clock cable to allow you the use of the divided CPU clock as clock for
the debug interface. The relation between the CPU clock and the debug interface clock
is specific for your CPU. Refer to your ICD Target Guide for detailed information. The
use of the divided CPU clock has the following advantages:

• The max. speed for the debug interface can be used. However we recom-
mend 10MHz as the max. speed.

• The clock for the debug interface is automatically adapted if the CPU clock is
changed by your application program.

• The TRACE32 debugger software

TRACE32
Debugger Software

Debug Cable
to Target

PODBUS Ethernet Converter (PODETH)

PODBUS Interface Card for ISA (PODPC)

PODBUS Interface for Printer Port (PODPAR)

Debug Module

Clock Cable
3 Quick Installation for TRACE32-ICD

System Concepts

The TRACE32 Debugger Software runs on a host (PC or workstation). The host
communicates with the target via the Debug Module.

• For the fast communication between the host and the debug module a special bus
interface is used: PODBUS (Processor Oriented Device Bus).

An advantage of the PODBUS is that your debug environment can be easily expanded
by additional PODBUS devices, to provide a powerful tool configuration. Additional
PODBUS devices are ICD Trace, ICD RISC Trace, EPROM Simulator, Stimuli
Generator etc.

• The connection between the target and the debug module is done by a processor
specific debug interface cable.

Host Interfaces

Three different interfaces are available to connect the host system to the PODBUS:

• PODPC interface card for ISA bus
• PODPAR converter for printer port (LPTx:)
• PODETH converter to Ethernet (Twisted Pair)

Host ------------------------- Debug Module -------------------------------- Target
PODBUS Debug Interface
Quick Installation for TRACE32-ICD 4

PODBUS

DEBUG
MODULE

Target

PC

ISA card
PODPC

clock
cable

System configuration with ISA card (PODPC)

parallel

PODPAR

trigger
in/out

standard
parallel

cable

AC/DC-adapter

supply
power

DEBUG
MODULE

Target

Printer
Port

(LPTx:)

PC

PODBUS

clock
cable

System configuration with printer port interface (PODPAR)
5 Quick Installation for TRACE32-ICD

Workstation

 PC or

PODETH

E
th

e
rn

e
t

AC/DC-adapter

trigger
in/out

HUB

DEBUG
MODULE

Target

PODBUS

E
th

e
rn

e
t

1
0

 M
H

z,
 T

w
is

te
d

 P
a

ir

clock
cable

System configuration with ethernet interface (PODETH)
Quick Installation for TRACE32-ICD 6

PODPC Interface Card for ISA bus

When a PODPC interface card is used no additional power supply is required for
additional PODBUS devices.

Address select jumpers on the ISA card:

JP3 must always be on.

The BNC connector is used to input/output a trigger signal to/from the Debug Module.For
more information on this Trigger feature refer to Trigger in the ICD Users Guide .

JP0 JP1 JP2 Address (hex) Address (dec)

on on on 350 848

off on on 250 592

on off on 260 608

off off on 280 640

on on off 300 768

off on off 330 816

on off off 340 832

off off off 390 912

Jumper

PODBUS

ISA BUS

BNC connector
trigger in/out
7 Quick Installation for TRACE32-ICD

PODPAR Converter for Printer Port (LPTx:)

External power supply is required for the PODPAR (Plug: 7-9V; inner negative, outer
positive). Please use only the enclosed AC/DC-Adapter.

The BNC connector is used to input/output a trigger signal to/from the Debug Module.For
more information on this Trigger feature refer to Trigger in the ICD Users Guide .

trigger in/out

power supply

PODBUS OUT

Printer Port
Quick Installation for TRACE32-ICD 8

PODETH Converter to Ethernet (Twisted Pair)

The PODBUS controller for ethernet contains both, an ethernet connector for twisted pair
and a printer port interface, to provide a flexible host connection.

External power supply is required for the PODETH (Plug: 7-9V; inner negative, outer
positive). Please use only the enclosed AC/DC-Adapter.

The BNC connector is used to input/output a trigger signal to/from the Debug Module. For
more information on this Trigger feature refer to Trigger in the ICD Users Guide .

Printer Porttrigger
in/out

power
supply

PODBUS OUT

Ethernet
9 Quick Installation for TRACE32-ICD

The LEDs transmit, receive, collision, link, polarity, jabber indicate the status of the
integrated Ethernet transceiver MC68160.

LEDs

POWER External power is supplied.

ACTIVE On if device is active, flashes if device is not used.

ERROR On if device is active, flashes if device is not used. In error
case an error code will be pulsed. See the ICD Debugger
User Guide for further information.

TRANSMIT Transmit activity.

RECEIVE Receive activity.

COLLISION Collision activity.

LINK Twisted pair link integrity.

POLARITY Twisted Pair Polarity Error (receiver inputs TPRX+, TPRX-
are reversed).

JABBER Twisted Pair Jabber condition detected.
Quick Installation for TRACE32-ICD 10

The Debug Module

Some processor types like MPC740/750, PPC603 … require a Power Debug Module. But
there is no difference in using this module.

LEDs

POWER Power is applied to the debug module. Power will be
supplied via the PODBUS. Therefore power is on when
the host interface is on.

SELECT (Optionally) It is possible to connect more than one device
to the PODBUS. Each device can be independently
controlled by the debugger software. The LED is on when
this device is currently controlled.

EMULATE The user program is running on the target.

PODBUS IN
connector to host interface

PODBUS OUT
connector for additional
devices (optional)

connector for
debug cable
11 Quick Installation for TRACE32-ICD

Hardware Installation

Choose one of the following installations depending on your host interface:

• ISA Interface Card (PODPC)

• Parallel Interface Card (PODPAR)

• Ethernet Interface (PODETH)

Installation with ISA Interface Card (PODPC)

Do not connect or disconnect anything while power is on!

PODBUS cable

ISA card
Debug
Module

Optional
wire for
CPU clock

debug
cable
Quick Installation for TRACE32-ICD 12

To configure your TRACE32-ICD with the PODPC interface card:

1. Install the ISA card (PODPC) on your PC.

Insert the ISA card (PODPC) in a free ISA slot of your PC. The default I/O address
of the ISA interface card is set to 350h. If this address is already in use it can be
changed by setting the jumpers on the card. Address select jumpers on the ISA
card:

JP3 must always be on.

If you change the jumper setting a modification in the TRACE32 configuration file
config.t32 is also required.

Example: If the jumpers settings are JP0=OFF, JP1=ON, JP2=OFF, JP3=ON the
file config.t32 must have the following contents:

PBI=
ADDRESS=816 (the address must be entered in decimal format)

For more information on the configuration file see PODPC or PODPAR on MS-
WINDOWS (PC).

The PODPC requires no additional power supply.

2. Connect the Debug Module with PODBUS cable to the ISA card.

3. Connect the Debug Module to the target using the debug cable.

A list of the supported processors and the pinout of the dedicated debug interface
connector (BDM, JTAG, OCDS, COP, ONCE, …) can be found in the ICD Target
Guide for your CPU family.

JP0 JP1 JP2 Address (hex) Address (dec)

on on on 350 848

off on on 250 592

on off on 260 608

off off on 280 640

on on off 300 768

off on off 330 816

on off off 340 832

off off off 390 912
13 Quick Installation for TRACE32-ICD

4. Connect the clock cable (optional).

By default TRACE32-ICD uses a fixed clock to run the debug interface. A clock
range from 100KHz up to 5 MHz can be used.

We also provide a clock cable to allow you the use of the divided CPU clock as clock
for the debug interface. The relation between the CPU clock and the debug interface
clock is specific for your CPU. Refer to your ICD Target Guide for detailed
information. The use of the divided CPU clock has the following advantages:

• The max. speed for the debug interface can be used. However we recom-
mend 10MHz as the max. speed.

• The clock for the debug interface is automatically adapted if the CPU clock is
changed by your application program.

The setting for the debug clock are done during the Setup of the Debug
Environment .
Quick Installation for TRACE32-ICD 14

Installation with Parallel Interface Card (PODPAR)

Do not connect or disconnect anything while power is on!

standard parallel
cable for printer
port (LPTx:) of PC

power supply

PODPAR Debug
Module

optional
wire for
CPU clock

debug
cable

PODBUS
15 Quick Installation for TRACE32-ICD

To configure your TRACE32-ICD with the PODPAR interface card:

1. Connect the Printer Port Interface PODPAR with enclosed cable to the
printer port (LPTx:) of the PC.

Normally no changes on your PC are needed. The printer port interface supports
standard and EPP parallel ports (improved speed). At common PC’s the parallel
port mode can be selected in the BIOS. The BIOS must be switched to EPP,
EPP V1.7 or EPP V1.9. Some PC’s require special tools to modify the parallel port
mode. Please ask your PC manufacturer.

During the software installation you will be asked which printer port you want to use
and if EPP mode is supported. The entry in the config.t32 file will be generated
automatically.

For standard configuration the file config.t32 must have the following contents:

PBI=
LPT1 (or optional LPT2)

If the PC supports EPP mode the following config.t32 entries are required:

PBI=
LPT1 (or optional LPT2)
EPP

For more information on the configuration file see PODPC or PODPAR on MS-
WINDOWS (PC).

2. Connect the power supply to the PODBUS printer port interface.

(Plug: 7-9V; inner negative, outer positive). Please use only the enclosed AC/DC-
adapter.

3. Connect the Debug Module via the PODBUS connector to the PODPAR
box.

4. Connect the Debug Module to the target by the debug cable.

A list of the supported processors and the pinout of the dedicated debug interface
connector (BDM, JTAG, OCDS, COP, ONCE, …) can be found in the ICD Target
Guide for your CPU family.
Quick Installation for TRACE32-ICD 16

5. Connect the clock cable (optional).

By default TRACE32-ICD uses a fixed clock to run the debug interface. A clock
range from 100KHz up to 5 MHz can be used.

We also provide a clock cable to allow you the use of the divided CPU clock as clock
for the debug interface. The relation between the CPU clock and the debug interface
clock is specific for your CPU. Refer to your ICD Target Guide for detailed
information. The use of the divided CPU clock has the following advantages:

• The max. speed for the debug interface can be used. However we recom-
mend 10MHz as the max. speed.

• The clock for the debug interface is automatically adapted if the CPU clock is
changed by your application program.

The setting for the debug clock are done during the Setup of the Debug
Environment .
17 Quick Installation for TRACE32-ICD

Installation with Ethernet Interface (PODETH)

PODETH provides an Ethernet interface (twisted pair, 10 Base T) for the Debug Module.

Do not connect or disconnect anything while power is on!

debug
port
cable

optional
wire for
CPU clock

Debug
Module

PODETH

power supply

PODBUSEthernet
Quick Installation for TRACE32-ICD 18

To configure your TRACE32-ICD with the PODETH interface card:

1. Connect the Ethernet Interface to your Ethernet (cable not enclosed).

2. Connect the power supply to the PODBUS Ethernet Interface.

(Plug: 7-9V; inner negative, outer positive). Please use only the enclosed AC/DC-
adapter.

3. Connect the Debug Module via the PODBUS connector to the PODETH
box.

4. Connect the Debug Module to the target by the debug cable.

A list of the supported processors and the pinout of the dedicated debug interface
connector (BDM, JTAG, OCDS, COP, ONCE, ...) can be found in the ICD Targets
for your CPU family.

5. Connect the clock cable (optional).

By default TRACE32-ICD uses a fixed clock to run the debug interface. A clock
range from 100KHz up to 5 MHz can be used.

We also provide a clock cable to allow you the use of the divided CPU clock as clock
for the debug interface. The relation between the CPU clock and the debug interface
clock is specific for your CPU. Refer to your ICD Target Guide for detailed
information. The use of the divided CPU clock has the following advantages:

• The max. speed for the debug interface can be used. However we recom-
mend 10MHz as the max. speed.

• The clock for the debug interface is automatically adapted if the CPU clock is
changed by your application program.

The setting for the debug clock are done during the Setup of the Debug
Environment .
19 Quick Installation for TRACE32-ICD

Software Installation

In this section the installation for the TRACE32-ICD software is described.

The installation depends on the operating system, the host and the host interface.
Therefore select the corresponding chapters according to your needs:

• PODPC or PODPAR on MS-WINDOWS (PC)

• PODETH on MS-WINDOWS (PC)

• PODETH on SunOS, Solaris (SUN)

• PODETH on HP-UX 10.X (HP-9000)
Quick Installation for TRACE32-ICD 20

PODPC or PODPAR on MS-WINDOWS (PC)

Installation on Windows 3.x:

1. Start \bin\win32s\disk1\setup.exe on the CD to install WIN32s.

2. Then start install.bat in the root directory of the CD-ROM and follow the
instructions of the installation program.

Installation on Windows 3.x (WIN32s), Windows 95, Windows 98, Windows NT:

1. Start setup.bat in the root directory of the CD, if it does not start automatically.
Follow the instructions of the installation program.

Some hints to answer the questions of the installation program:

• Select product type ICD/FIRE BDM/JTAG/ROM-Monitor with PC .

• In the ICE/BDM-ROM list select ICD <CPU> e.g. ICD 68K.

• Select ICD/FIRE BDM/JTAG/ROM-Monitor with PODPC if you are using the ISA
card (PODPC) for your host connection.

• Select ICD/FIRE BDM/JTAG/ROM-Monitor with PODPAR if you are using the
printer port for your host connection.Then select EPP mode if supported by your
PC, standard mode otherwise. At last select the used printer port LPTx:.
21 Quick Installation for TRACE32-ICD

• Select Multiple document interface (MDI) or Multiple window interface (MWI).

When the TRACE32 debugger software is started, an application specific window is
displayed. All windows which display debugger information are placed within this
application window (MDI).
Quick Installation for TRACE32-ICD 22

When the TRACE32 debugger software is started, a command window is displayed,
that contains the main menu bar, the main tool bar and the command line. All windows
which display debugger information are placed freely on the screen (MWI).

• Select “remote control access not active”

The installation program generates a TRACE32 folder where you can start the debugger
software (and the Online Help) from.

If you prefer to start the program by clicking on an icon on the desktop, use the Explorer,
search for the startfile T32M<CPU>.EXE (e.g t32m68.exe for the CPU32 from Motorola)
and pull it onto your desktop.
23 Quick Installation for TRACE32-ICD

The Configuration File for PODPC on MS-WINDOWS

The configuration file is used to make some basic settings for the cooperation between
TRACE32-ICD and the host system. The entries are automatically made by the
installation program.

By default the software assumes that the configuration file is in the system directory and is
named config.t32 . Refer to Setup the Application Properties in Tutorial for
TRACE32-ICD if you want to change the name or location of the configuration file.

Standard settings in the configuration file:

Settings in the configuration file if the jumper settings are changed during the hardware
installation:

For more advanced setting refer to the Installation Guide .

;Environment variables
OS=
ID=T32
TMP=C:\temp
SYS=d:\t32\isa

;temp directory for TRACE32
;system directory for TRACE32

; Printer settings
PRINTER=WINDOWS ;all standard windows printer can be

;used from the TRACE32 user interface

PBI=
ADDRESS=816 ;the address must be entered in

;decimal format

;Environment variables
OS=
ID=T32
TMP=C:\temp
SYS=d:\t32\isa

;temp directory for TRACE32
;system directory for TRACE32

; Printer settings
PRINTER=WINDOWS ;all standard windows printer can be

;used from the TRACE32 user interface
Quick Installation for TRACE32-ICD 24

The Configuration File for PODPAR on MS-WINDOWS

The configuration file is used to make some basic settings for the cooperation between
TRACE32-ICD and the host system. The entries are automatically made by the
installation program.

By default the software assumes that the configuration file is in the system directory and is
named config.t32 . Refer to Setup the Application Properties in Tutorial for
TRACE32-ICD if you want to change the name or location of the configuration file.

Standard settings in the configuration file:

Settings in the configuration file if EPP mode should be used:

For more advanced setting refer to the Installation Guide .

PBI=
LPT1

;or optional LPT2

; Environment variables
OS=
ID=T32
TMP=C:\temp
SYS=d:\t32\isa

;temp directory for TRACE32
;system directory for TRACE32

; Printer settings
PRINTER=WINDOWS ;all standard windows printer can be

;used from the TRACE32 user interface

PBI=
LPT1
EPP

;or optional LPT2

;Environment variables
OS=
ID=T32
TMP=C:\temp
SYS=d:\t32\isa

;temp directory for TRACE32
;system directory for TRACE32

; Printer settings
PRINTER=WINDOWS ;all standard windows printer can be

;used from the TRACE32 user interface
25 Quick Installation for TRACE32-ICD

 PODETH on MS-WINDOWS (PC)

Installation of the TRACE32 Debugger Software

Installation on Windows 3.x:

1. Start \bin\win32s\disk1\setup.exe on the CD to install WIN32s.

2. Then start install.bat in the root directory of the CD-ROM and follow the
instructions of the installation program.

Installation on Windows 3.x (WIN32s), Windows 95, Windows 98, Windows NT:

1. Start setup.bat in the root directory of the CD, if it does not start automatically.
Follow the instructions of the installation program.

Some hints to answer the questions of the installation program:

• Select product type ICD/FIRE BDM/JTAG/ROM-Monitor with Ethernet
• In the ICE/BDM-ROM list select ICD <CPU> e.g. ICD 68K
• Select Multiple document interface (MDI)
• Select Remote control access not active

The installation program generates a TRACE32 folder where you can start the debugger
software (and the Online Help) from.

If you prefer to start the program by clicking on an icon on the desktop, use the Explorer,
search for the startfile t32w95.exe and pull it onto your desktop.
Quick Installation for TRACE32-ICD 26

The Configuration File for PODETH on MS-WINDOWS

The configuration file is used to make some basic settings for the cooperation between
TRACE32-ICD and the host system. The entries are automatically made by the
installation program.

By default the software assumes that the configuration file is in the system directory and is
named config.t32 . Refer to Setup the Application Properties in Tutorial for
TRACE32-ICD if you want to change the name or location of the configuration file.

Standard settings in the configuration file:

For more advanced setting refer to the Installation Guide .

LINK=NET
NODE=t32
PACKLEN=1024

; Environment variables
OS=
ID=T32
TMP=C:\temp
SYS=d:\t32\isa

;temp directory for TRACE32
;system directory for TRACE32

; Printer settings
PRINTER=WINDOWS ;all standard windows printer can be

;used from the TRACE32 user interface
27 Quick Installation for TRACE32-ICD

Preparations for the Ethernet Interface

The Ethernet connection requires the driver program t32w95.exe with networking
capabilities. This program requires that a WINSOCK compatible TCP/IP provider is
installed. First a new node must be created for TRACE32. The Ethernet address of the
system is placed on the bottom side of the system. The following line must be added to
the file HOSTS:

Note, that the INTERNET address given here is an example only. Contact your network
administrator for a new INTERNET address for TRACE32-ICD. When a RARP server is
used, the Ethernet address of the system must be entered in the file ETHERS:

The INTERNET address is requested by a RARP protocol by TRACE32-ICD. If no RARP
server is running, the address for the first connect must be set in the host table. After the
first successful connect the INTERNET address is stored in nonvolatile memory within
TRACE32-ICD. The following command sets the host translation table:

NOTE: Windows95 has a bug, that may cause the arp command to fail, when the arp
cache is empty. In this case 'ping' another host before executing the arp command, this
will fill the arp cache.

192.9.200.5 t32

0:c0:8a:0:0:0 t32

arp -s t32 0-c0-8a-0-0-0
Quick Installation for TRACE32-ICD 28

PODETH on SunOS, Solaris (SUN)

Installation of the TRACE 32 Debugger Software

In the following example the directory /home/t32 is used as the system directory.

The system directory is created with the following command:

The files are extracted from the CD to the system directory with the following commands:

In the login script (.cshrc in the home directory for the C-shell) the following lines must be
added:

Prepare and install the fonts:

Verify that you have write permission to the system directory and the boot.t32 file and
prepare the configuration file:

mkdir /home/t32 (or similar)

mount -F hsfs -o ro /dev/dsk/c0t6d0s2 /cdrom/trace32 (or similar)
cd /home/t32
mkdir suns
cp -r /cdrom/trace32/unix/* .
cp -r /cdrom/trace32/bin/suns .
mv suns/config.t32 .
chmod -R u+w *

setenv T32SYS /home/t32
setenv T32TMP /tmp
setenv T32ID T32

cd /home/t32/fonts
mkfontdir .
xset +fp /home/t32/fonts
xset fp rehash

cd /home/t32
vi config.t32

...

LINK=NET
NODE=t32
29 Quick Installation for TRACE32-ICD

Copy the executable file to a directory in the PATH, or include it in the $PATH variable:

Preparations for the Ethernet Interface

Before installation a new node must be created. The Ethernet address of the system is
placed on the bottom side of the system. The following line must be added to the file
/etc/hosts:

Note, that the INTERNET address given here is an example only. Contact your network
administrator for a new INTERNET address for TRACE32. The Ethernet address of the
system must be entered in the file /etc/ethers:

The INTERNET address is requested by a RARP protocol by TRACE32. If no RARP
server is running, the address for the first connect must be set in the host table. After the
first successful connect the INTERNET address is stored in nonvolatile memory within
TRACE32. The following command sets the host translation table:

This command must be executed immediately before the first startup of the emulator. It is
not required for future startups because the INTERNET address is stored in the emulator.
The arp cache table should be checked just before the first startup with the command
'arp -a'.

The net driver must be activated. The node name can be changed, when not identical to
't32'.

cp t32cde /usr/bin

192.9.200.5 t32

0:c0:8a:0:0:0 t32

arp -s t32 0:c0:8a:0:0:0

Configuration Command:

LINK=NET

NODE=<nodename> Node name of TRACE32 (default: t32)

POOL=<nodename>,... Define a set of nodes, which are scanned for

connection.
Quick Installation for TRACE32-ICD 30

PODETH on HP-UX 10.X (HP-9000)

Installation of the TRACE 32 Debugger Software

In the following example the directory /home/t32 is used as the system directory and the
connection is made by Ethernet.

The system directory is created by the following commands:

Extracting the files from CD (the device name is only an example):

In the login script (.cshrc in the home directory) the following lines must be added:

Prepare and install the fonts:

Verify that you have write permission to the system directory and the boot.t32 file and
prepare the configuration file:

mkdir /home/t32
cd /home/t32
mkdir hp700

pfs_mountd &
pfsd &
pfs_mount -t iso9660 -x unix /dev/dsk/c0t2d0 /cdrom
cp -r /cdrom/unix/* /home/t32
cp -r /cdrom/bin/hp700 /home/t32/hp700
mv hp700/config.t32 /home/t32

setenv T32SYS /home/t32
setenv T32TMP /tmp
setenv T32ID T32

cd /home/t32/fonts
/usr/bin/X11/mkfontdir
xset +fp /home/t32/fonts
xset fp rehash

cd /home/t32
vi config.t32

...

LINK=NET
NODE=t32
PACKLEN=1024
31 Quick Installation for TRACE32-ICD

Copy the executable file to a directory in the PATH, or include it in the $PATH variable:

Preparations for the Ethernet Interface

For the adaptation to Ethernet a new node must be created. The Ethernet address of the
system is placed on the bottom side of the system. The following line must be added to
the file /etc/hosts:

Note, that the INTERNET address given here is an example only. Contact the network
administrator for a new INTERNET address for TRACE32.

The INTERNET address is not available to the TRACE32 system. Therefore it can't
response to ARP requests. For the first connection, the Ethernet address of the system
must be entered in the host table by the following command:

The net driver must be activated. The node name can be changed, when not identical to
't32'.

On HP-9000/300 and HP-9000/400 and also some HP-9000/700 workstations the packet
size must be limited to 1024 bytes. Use the command PACKLEN=1024 for these type of
workstations!

cp t32cde /usr/bin

192.9.200.5 t32

arp -s t32 0:c0:8a:0:0:0

Configuration Command:

LINK=NET

NODE=<nodename> (default: t32)

PACKLEN=<psize> (default:1472)
Quick Installation for TRACE32-ICD 32

Troubleshooting

If you can not solve your problem with the following hints contact our support line:
telephone: ++49 8104/8943-50
facsimile: ++49 8104/8943-49
e-mail: support@lauterbach.com

System doesn't response to ping on Ethernet
Internet address already setup in system, or arp used?
When arp is used, it must be used on the same workstation short before.
Ethernet address correct?
System on the correct subnet?
Cables and transceiver o.k.?
Ethernet software in host (PC) configured correctly?

xset +fp fontpath gives error 'bad value …'
Does the font directory exist?
Does the fonts.dir file exist (created by mkfontdir)?
Is the directory seen under the same name by the X-server?
Have all directories that lead to the font directory read and execute
permissions for everybody?

Executable program does not start or gives fatal error
When transferring between different OS-systems, files copied in binary mode?Access
rights to file in directory o.k.?
Configuration file contents o.k.?

Executable program displays 'FATAL ERROR selecting device-driver …'
Using configuration file for MS-DOS for the WINDOWS-Driver?
WINDOWS and workstation drivers cannot load new drivers.
Environment variable 'T32CONFIG' and/or 'T32SYS' correctly set?

Executable program displays 'error reading config.t32:'
Configuration file contents o.k.?
Commands in file in uppercase?
Blanks inserted/not inserted?
Device specific commands placed after device header?
Device configuration blocks separated by empty lines?
Environment variable 'T32CONFIG' and/or 'T32SYS' correctly set?
33 Quick Installation for TRACE32-ICD

Executable program stops without message, but with window opened
Access rights to directory o.k.?
On UNIX host, try with 'NOLOCK' feature.
When using the RS232 interface: Is a login process active on the tty?

Program stops with message 'font xxxx not found'
Do fonts appear in the 'xlsfonts' command?
Can one font (e.g. t32-lsys-16) be displayed by 'xfd -fn t32-lsys-16'?
Fonts added to X-Windows FONTPATH?
Fonts converted, when required, and .bdf files removed?
Command to generate font directory executed with correct parameters?
Fonts installed on the X-Windows server, not client?
If using an X-Terminal, use the conversion programs for the X-Terminal?

Executable program displays 'boot.t32 not found'
Access rights to directory o.k.?
Read and write access to boot.t32 (write required on UNIX without
NOLOCK)?Configuration file contents o.k.?
Environment variable 'T32SYS' correctly set?

Executable program stops after displaying 'error reading boot.t32'
When transferring between different OS-systems, files copied in binary mode?Access
rights granted?
Try again after switching off the TRACE32 system?

Executable program stops after displaying 'booting...' or 'finished.'
When transferring between different OS-systems, files copied in binary mode?Packet size
set correctly on Ethernet, handshake set when required?

Bootloader stops with message 'fatal error …'
When transferring between different OS-systems, files copied in binary mode?Mixing
different versions of the software, e.g. MCC.T32 and MCCxxx.t32?

Bootloader displays 'cannot save image...'
Write access right on system directory?
Disk full?
Existing read-only file?

Software crashes or stops after booting is finished
Boot image file maybe destroyed, remove all boot0x.t32 files?
Connection of modules o.k., connector bend?
Quick Installation for TRACE32-ICD 34

Software doesn't work stable
Boot image file maybe destroyed, remove all boot0x.t32 files?
Connection of modules o.k., connector bend?
Check connection of Fibre Optic, Ethernet or Parallel interface.
On Ethernet try with smaller packet size and/or handshake.

Emulation system doesn't work correctly
Check Emulation Probe Manual in 'Targets' part of the manual.

Parallel Port not working stable
Check that the port is on the correct mode. Choose either EPP 1.9 or compatible mode.
The mode selection can usually be done in the BIOS setup (can be activated during
booting).
35 Quick Installation for TRACE32-ICD

Tutorial for TRACE32-ICD

About the Tutorial

What is it about?

This is a tutorial for all In-Circuit Debuggers (TRACE32-ICD) , that are implemented
using their onchip debug interface. Typical examples for onchip debug interfaces are
BDM, JTAG, ONCE …

Preconditions:

The tutorial assumes that the development system is already installed . You should
have basic knowledge of the C-programming language in order to be able to follow the
example code found in this tutorial. In addition working with WINDOWS is assumed as
known. Also some knowledge of the used processor and assembler/compiler is
necessary to get your debug system running.

Purpose of this tutorial:

The purpose of this tutorial is to get your debug system running , to write the batch job
that does the necessary startup procedure and to make you familiar with the main
features of the In-Circuit Debugger.

How to use this tutorial:

The tutorial contains a guided debug session. It uses a simple C-program example to
show you the most important debug features. You should perform a number exercises as
you read this tutorial. We recommend to go completely through all chapters , since
besides the tour (written in normal text format) there are very helpful remarks (written in
italics) which will not be repeated in other chapters.

Where can I get more information:

The common TRACE32 user interface contains a detailed Online-Help, that offers the
most current description of all debug features. Refer to The Online Help on how to start
the Online Help system.

How long does it take?

60 minutes.
1 Tutorial for TRACE32-ICD

Start TRACE32-ICD

If your debug tools are installed in accordance to Quick Installation for TRACE32-ICD ,
power up your debug system first and then the target.

To start the debugger software on your host open the TRACE32 folder in the start menu
and start the TRACE32 user interface. If you have generated an icon on your desktop,
double click there. In the example below the software for two processor families (PowerPC
and 68HC12) is installed.

To work with the In-Circuit Debugger (ICD) a working target
system is required!

Take care of the proper sequence on powering up/down:
Power Up: debugger - target
Power down: target - debugger
Tutorial for TRACE32-ICD 2

Setup the Application Properties

The property window of your application allows same basic setting for the debugger.

1. Definition of an user specific configuration file.

By default the configuration file config.t32 in the system directory is used. The
option -c allows you to define your own location and name for the configuration file.
For more information on the configuration file refer to Quick Installation for
TRACE32-ICD

2. Definition of a working directory.

It is recommended not to work in the system directory.

3. Definition of the start-up size of the application window.

1

2

3

3 Tutorial for TRACE32-ICD

The Online Help

The most current version of the TRACE32 books is available in the online help. Use the
Help Topics button to get access to the TRACE32 online help.

Help Topics button
in the Tool bar
Tutorial for TRACE32-ICD 4

The online help provides also a powerful context sensitive help.

Click first on the Help Context button and then move the quotation mark cursor on the
object you are interested in. A popup window is opened to display information about this
object.

Use the Help Context button on the tool bar
to activate the context sensitive help
5 Tutorial for TRACE32-ICD

The About TRACE32… command in the Help menu provides version information for all
parts of TRACE32-ICD.
Tutorial for TRACE32-ICD 6

Setup the Debug Environment

In order to set-up your debugger, you need some knowledge about your CPU and about
your target configuration. To be able to download your program including all symbol and
debug information you also need some knowledge about your compiler.

A basic start-up procedure and the CPU specific setting for the ICD-Debuggers are
described in the ICD Target Manual .

Look at the Reference book for a detailed description of all generic commands.

ICD Target Manual gives quick access
to the settings and additional features for your CPU
7 Tutorial for TRACE32-ICD

A typical start-up procedure consists of:

1. The CPU specific settings.

The SYStem Window provides all CPU specific settings. Use System Settings… in
the CPU menu to open this window.

Inform the debugger about the CPU type on your target, if an automatic detection of
the CPU is not possible. Select the correct CPU type from the pull down menu in the
field CPU.
(Command: SYStem.CPU <CPU type>)

Set the system options in the option field corresponding to your target configuration
and application program.
(Command: SYStem.Option <option>)

On some processor types the special function registers can be moved. The command
(SYStem.Option BASE) is used to inform the debugger about the new base address (address of
the first SFR). If the debugger does not have the correct base address no or wrong data will be
displayed and FLASH programming might not be possible.
Tutorial for TRACE32-ICD 8

Set the transfer clock from the debug interface to your target. By default TRACE32-
ICD uses a fixed clock to run the debug interface. A clock range from 100KHz up to
5 MHz can be used. (Command: SYStem.BdmClock)

We also provide a clock cable to allow you the use of the divided CPU clock as clock
for the debug interface. The relation between the CPU clock and the debug interface
clock is specific for your CPU. Refer to your ICD Target Manual for detailed
information. The use of the divided CPU clock has the following advantages:

• The max. speed for the debug interface can be used. However we recom-
mend 10MHz as the max. speed.

• The clock for the debug interface is automatically adapted if the CPU clock is
changed by your application program.

2. Enter the debug mode.

Select the Up button in the Mode field to restart the CPU with debug mode enable.
(Command: SYStem.Up)

The user interface establishes the communication to the target´s microprocessor. After this command
you should be able to access the registers.

3. Do the target specific settings.

The CPU is active now and you can initialize the CPU by writing to the special
function registers using the Data.Set command. E. g. some CPU need to set the
chip selects in order to access memory.
9 Tutorial for TRACE32-ICD

4. Load your application.

Load your application by using the command
Data.LOAD.<option> <file_name> .

The option required for your compiler can be found in the ICD Target Manual in the
section Compiler .

If the file should be loaded to an Eeprom, the memory class EEPROM must be used to generate the
required programming sequence. Example: d.load.b epromdata EEPROM:

For flash programming refer to the FLASH command group in the Reference book.

To display the source code the compiled program must be equipped with debug
information (frequently: compiler option “debug”). Then TRACE32 can load the
compiler output formats directly.

5. Initialize program counter and stackpointer: Register.Set

Many compilers add these settings in the startup code to the user program automatically.

It is recommended to write a batch job to set up the debugger to guarantee a proper start-
up sequence.
Tutorial for TRACE32-ICD 10

Batch Jobs

Create a new batch file start.cmm in your working directory by using the command
PEDIT start.cmm .

TRACE32 has its own command language for batch jobs. It is called PRACTICE and it is very powerful (see
the PRACTICE User’s Guide and PRACTICE Reference for more information). All commands of the
TRACE32 development tools, commands for program flow, conditional commands and I/O commands are
allowed. The default extension for batch files is “.cmm”.

Also debugging of a PRACTICE program is supported. Look at the description in the PRACTICE User’s
Guide and PRACTICE Reference (commands: PLIST, PEDIT, PBREAK).

Enter the required commands and finish the batchjob by ENDDO and click the Save
button. The picture above shows a startup procedure for the PowerPC505.
11 Tutorial for TRACE32-ICD

Start the startup procedure by using Batchfile… in the File pulldown menu.

To continue our tour take one of the example files you can find in the TRACE32 system
directory under

\demo\<processor_family>\compiler\...
e.g. \demo\powerpc\compiler\Diab\Diabc.cmm .

or use your own batch file, if you have already prepared one.
Tutorial for TRACE32-ICD 12

The User Interface

Open a window to display the CPU registers. You can alternatively select Registers from
the View pulldown menu, push the Register button or enter Register.view at the
prompt B:: in the command line.

Pulldown Menu

Command Line

Register Button
13 Tutorial for TRACE32-ICD

Most features can alternatively be selected from a pulldown menu, from a button in the main tool bar or from
the command line. Please remember this even if we use just one way in the following chapters.

The TRACE32 commands are not case sensitive. In the TRACE32 books we use upper case letters for the
characters that are significant for the command entry. E.g. Register.view can be shortened by r .
Another example which shows the typical TRACE32 command structure
<command family>.<subcommand> is Data.List that can be shortened to d.l .

A good hint is to look at the soft keys. They provide a guided command entry. All possible commands and
parameters are displayed. Instead of writing to the command line you can assemble the correct command
by clicking on the soft keys.
Example: Assembly of the Data dump command by using the softkeys.

More detailed information about the TRACE32 user interface can be found in the Operating System User’s
Guide .

In the window header the TRACE32 command that was executed to open the window is displayed.

Soft Keys
Tutorial for TRACE32-ICD 14

How to Debug the Program

Open the Data.List window by using Source/List in the View menu. The program listing
around the program counter is displayed.
15 Tutorial for TRACE32-ICD

Single step through the program by clicking the Step button in the Data.List window:

Remember: Mostly there are many possibilities to get the same result. Here you can alternatively use the
pulldown menu, the accelerator F2, the speed bar or the command line.
Tutorial for TRACE32-ICD 16

Now have a look at the state line: The address of the current cursor position (blue bar in
active window) is displayed there.

The next field displays the state of the debugger: stopped means your application
program is stopped. You can now for example inspect or change memory.

The debug mode MIX is selected (will be explained next).

(symbolic) address at the cursor position state of debugger debug mode
17 Tutorial for TRACE32-ICD

Toggle the debug mode from MIXed to HLL by a click on the Mode button in the Data.List
window. The state line shows the debug mode HLL: High Level Language. Then do
another Step.

The step you did was a high level language step to the next HLL line.

If you toggle back to MIXed mode, both the C-source and the corresponding assembler
commands will be displayed.

Button to toggle between MIXed and HLL mode
Tutorial for TRACE32-ICD 18

If you single step while an interrupt is pending, the next step will enter the interrupt routine.
If you want to single step your program without entering an interrupt routine use:

• SETUP.IMASKASM ON to disable the interrupts during single stepping on assembler
or mixed level.

• SETUP.IMASKHLL ON to disable the interrupts during single stepping on HLL level.
19 Tutorial for TRACE32-ICD

Select a code line and press the right mouse button. When you select Go Till Here the
program execution is started and then stops when the program reaches the selected code
line.

Local buttons for the Data.List window
Tutorial for TRACE32-ICD 20

Single Stepping is one of the basic debugging commands. Look at the Run pulldown
menu, at the local buttons of the Data.List window or at the main tool bar for the other
debug commands.

Step over function call or subroutines.

Go to the next code line written in the

Go to the last instruction

program listing. Useful e.g. to leave loops

of a function.
21 Tutorial for TRACE32-ICD

The commands Go Next, Go Return and Go Up are only available if the program is running in RAM or if the
CPU provides onchip breakpoints.

Return to the caller function.

Start the realtime emulation.

Stop the realtime emulation.
Tutorial for TRACE32-ICD 22

The Var.Frame window displays the function nesting for your application program. With
the option LOCAL the local variables of each function are displayed. When the option
CALLER is set, a few lines from the C-code are displayed to indicate where the function
was called.
23 Tutorial for TRACE32-ICD

TRACE32-ICD provides also more complex debug control commands. You can run or step until an
expression changes or becomes true. Example: Var.Step.Till j>9 single steps the program until the
variable j becomes greater than 9. More detailed information can be found in the Reference book at the
description of the commands Step.Change , Step.Till , Go.Change , Go.Till , Var.Step.Change ,
Var.Step.Till , Var.Go.Change and Var.Go.Till .
Tutorial for TRACE32-ICD 24

How to Display and Modify CPU Registers

We want to inspect the CPU registers now.

Try to change a register value by double-clicking on the value you want to change. The
Register.Set command for the selected register is displayed in the command line. You
only have to enter the new value and confirm it with return (see right picture above).
25 Tutorial for TRACE32-ICD

If the registers changed by the last steps should be marked in the Register window:

1. Click to the window header with the right mouse button.

The command, that was used to open the window is displayed in the command line
for modification. The window header becomes red.

2. Set the option /SpotLight and confirm the modification with return.

3. Execute a few single steps.

The registers changed by the last step are marked in dark red. The registers
changed in by the step before the last step are marked a little bit lighter etc. This
works up to a level of 4 step.
Tutorial for TRACE32-ICD 26

How to Display and Modify the Special Function Registers

Open the Peripherals window to display your CPUs special function register:

If you select the register contents the address, bit position and complete name of the
special function register is displayed in the state line.
27 Tutorial for TRACE32-ICD

You can modify the contents of a special function register:

• By pressing the right mouse button and selecting one of the predefined logical
value from the pulldown menu.

• By a double-click to numeric values. A Data.Set command to change the register
contents is displayed in the command line. Enter the new value and confirm it with
return.
Tutorial for TRACE32-ICD 28

How to Display and Modify Memory

To inspect an address range in the memory use the Data.dump window.

Select Dump… from the View menu. The Dump Memory dialog box is opened.

• Use the Browse button to browse through the symbol data base. Select a label by
a double-click and then confirm by pushing OK.

• Or enter the address directly in the Address field and push OK to open the
Data.dump window.

Memory Class + Address Value ASCII
29 Tutorial for TRACE32-ICD

There a two different way to define an address range:

• <start address>--<end address>

• <start address>++<offset>

Again, the value at a memory address can be modified by a double click. A Data.Set
command for the selected address in displayed in the command line. Enter the new value
and confirm it with return.

Display a dump at address 0 by using
the Memory Dump button

Use the command line to
display a memory dump
Tutorial for TRACE32-ICD 30

How to Set Breakpoints

Software Breakpoints

The ICD debuggers use software breakpoints by default. When a software breakpoint is
set to an instruction the code at this address is replaced by a special instruction e.g.
TRAP, that stops the realtime execution and returns the control to the onchip debug
system. This method requires RAM at the break positions! If you run your program
out of RAM the number of software breakpoints is unlimited.

If your program does not run in RAM, refer to Breakpoints in ROM, FLASH or EEPROM.

Back to the program. Doubleclick on the code line where you want to set a program
breakpoint. All code lines to which a program breakpoint is set are marked with a small
red bar.
31 Tutorial for TRACE32-ICD

Use List from the Breakpoint menu to display the information about all set breakpoints.

Start the program execution with Go. If the program does not reach your breakpoint, you
can stop the program execution with Break .

You can remove the breakpoint by another doubleclick to the marked line or by toggling
the breakpoint in the Break.List window.

Breakpoint type
Program breakpoint

Breakpoint is set as
software breakpoint

Breakpoint type
Tutorial for TRACE32-ICD 32

To set a program breakpoint to a code line, that is not displayed select Show Function…
in the Var menu. Doubleclick to the function to display it and then set the breakpoint by a
doubleclick to the code line.
33 Tutorial for TRACE32-ICD

The second breakpoint type, that is available when software breakpoints are used, is a
spot breakpoint. A spot breakpoint is a watchpoint, that stops the program execution for a
short time to update all displayed information and then restarts the program execution.

To set a spot breakpoint, select the code line where it makes sense, that the displayed
information is updated. Press the right mouse button and select Spotpoint from the
pulldown menu.

To watch for example all changes on the variable k, select the variable by the mouse,
press the right mouse button and apply Add to Watch Window from the pulldown menu.

If you now start the program execution with Go,
you can watch the changes on the variable k.
Tutorial for TRACE32-ICD 34

Breakpoints in ROM, Flash, EEPROM

Most processor types (not 6833x and 6834x) provide a small number of onchip
breakpoints. These breakpoints are used by TRACE32-ICD to set program or spot
breakpoints even if the program doesn’t run in RAM. For information on the available
onchip breakpoints for your CPU refer to the Onchip Breakpoints (Overview)

When the number of available onchip breakpoints is exceeded, the following error
message is displayed:

Since the debugger uses software breakpoints by default, you must inform
the debugger that the onchip breakpoints should be used!

MAP.BOnchip <address_range>

The command MAP.BOnchip indicates, that whenever a program or spot
breakpoint is set within the specified address range, the debugger should
use an onchip breakpoint.

Program breakpoint
Breakpoint is set as
onchip breakpoint

Breakpoint type
35 Tutorial for TRACE32-ICD

Breakpoints on Data Accesses

For most CPUs the provided onchip breakpoints can also be used by TRACE32-ICD to
stop the program execution when a read or write access occurs to a specific address
location. For information on the available onchip breakpoints for your CPU refer to the
Onchip Breakpoint Overview.

To stop the program execution on a read access to a variable, select the variable with the
cursor, press the write mouse button and select Read from the Breakpoint… pulldown.

Start the program execution with Go. If the program does not reach your breakpoint, you
can stop the program execution with Break .

Read breakpoint
Breakpoint is set as
onchip breakpoint

Breakpoint type
Tutorial for TRACE32-ICD 36

To stop the program execution on a write access to a variable, you can also use
Breakpoints… from the Var pulldown.

• Browse through the symbol data base to find the variable, select it by a double
click, select Write in the Variable Breakpoint Set dialog box. Push OK to set the
breakpoint.

• Or enter the variable name or the hll expression (e.g. to indicate only an element of
an array) in the Expression field of the Variable Breakpoint Set dialog box. Select
Write and push OK to set the breakpoint.

Start the program execution with Go. If the program does not reach your breakpoint, you
can stop the program execution with Break .

Most CPU also provide more complex break- and trigger configurations. The support for
these features by the TRACE32-ICD user interface varies for each CPU. For more
information refer to the ICD Target Manual .

Write breakpoint
Breakpoint is set as
onchip breakpoint

Breakpoint type
37 Tutorial for TRACE32-ICD

Onchip Breakpoints (Overview)

The following list give an overview of the usage of the onchip breakpoints by
TRACE32-ICD:

• CPU family

• Onchip breakpoints: Total amount of available onchip breakpoints.

• Instruction breakpoints: Number of onchip breakpoints that can be used for pro-
gram and spot breakpoints

• Data breakpoints: Number of onchip breakpoints that can be used as read or
write breakpoints

CPU family Onchip
Breakpoints

Instruction
Breakpoints

Data
Breakpoints

68k
6833x
6834x
68360

—
—
1

—
—
1

—
—
1

68HC12
68HC12B/D
all others

2
—

2
—

2
—

68HC16 — — —

ColdFire 2 1 1

PPC400

MPC500/800 4 Instruction
2 Data

4 2

PPC600 1
(No onchip breakpoint,

 if software breakpoints are used)

1 —

PPC740/750 2
(Reduced to 1 if software

breakpoints are used)

2/1 1

DSP56K
56k/56300
56100

2
1

2
1

2
1

ARM7 2
(Reduced to 1 if software

breakpoints are used)

2/1 2/1
Tutorial for TRACE32-ICD 38

Display and Modify HLL Variables

To display HLL variables use the Watch command from the Var pulldown menu.

Select the variable by a double click
from the symbol database

The selected variable is displayed at the
top of the Watch Window

Every time you use Watch from the
Var menu, the new variable is added
to the top of the window. Resize the
window to see all entries in the Watch
Window.
39 Tutorial for TRACE32-ICD

A quicker way to look at a variable is to mark the variable in the Data.List window by the
cursor and to press the right mouse button. From the Var pulldown menu select
Add to Watch Window .

If you want to display a more complex structure or an array in a separate window use
View… in the Var pulldown menu.

If you just want to watch all variables accessed by the current program context use
Show Current Vars from the Var pulldown menu and execute a view single steps.

Tutorial for TRACE32-ICD 40

In most windows a context sensitive menu can be used with the right mouse button. If you select a variable
you get access to the Var pulldown menu, that provides all features for displaying and modifying variables.

You want to inspect a variable and you are not sure about the spelling open the symbol
browser to display all symbols stored in the internal symbol database.

If you want to modify a variable value, double click to the value. The appropriate Var.set
command will be displayed in the command line. Enter the new value and confirm with
return.
41 Tutorial for TRACE32-ICD

Format HLL-Variables

To adapt the display of a variable to your needs, select the variable name, press the right
mouse and select Format… from the Var pulldown menu.

Select Type to display the
variable with the complete
type information
Tutorial for TRACE32-ICD 42

If you display more complex HLL structures, select TREE in the Format field of the
Change Variable Format dialog box. This formatting allows to select the display for each
member of the structure by clicking on + or -.
43 Tutorial for TRACE32-ICD

Exit TRACE32

To save the window configuration for your TRACE32-ICD use Store layout from the
Window menu. Store layout generates a PRACTICE file, that includes all commands to
reactivate your complete window configuration automatically. Enter a filename for the
PRACTICE file into the File name field of the Store dialog box and push Save to
generate the PRACTICE file.
Tutorial for TRACE32-ICD 44

Since PRACTICE support a modular program structure, you can enter a call for the
automatic window configuration into your start-up file.

To exit from TRACE32-ICD by using Exit in the File menu.

Take care of the proper sequence on powering up/down:
Power Up: debugger - target
Power down: target - debugger
45 Tutorial for TRACE32-ICD

	TRACE32-ICD Preface
	What is an In-Circuit Debugger?
	About this Guide
	Where to Look for More Information

	Quick Installation for TRACE32-ICD
	About the Installation Guide
	Product Overview
	System Concepts
	Host Interfaces
	The Debug Module

	Hardware Installation
	Installation with ISA Interface Card (PODPC)
	Installation with Parallel Interface Card (PODPAR)
	Installation with Ethernet Interface (PODETH)

	Software Installation
	PODPC or PODPAR on MS-WINDOWS (PC)
	PODETH on MS-WINDOWS (PC)
	PODETH on SunOS, Solaris (SUN)
	PODETH on HP-UX 10.X (HP-9000)

	Troubleshooting

	Tutorial for TRACE32-ICD
	About the Tutorial
	Start TRACE32-ICD
	Setup the Application Properties
	The Online Help
	Setup the Debug Environment
	Batch Jobs
	The User Interface
	How to Debug the Program
	How to Display and Modify CPU Registers
	How to Display and Modify the Special Function Registers
	How to Display and Modify Memory
	How to Set Breakpoints
	Software Breakpoints
	Breakpoints in ROM, Flash, EEPROM
	Breakpoints on Data Accesses
	Onchip Breakpoints (Overview)

	Display and Modify HLL Variables
	Format HLL-Variables
	Exit TRACE32

